Review MTH 211, Final spring 2014

Ayman Badawi

QUESTION 1. (i) To tile a floor, we may use pieces of a regular 8-gon with pieces of one of the following regular n-gon :
a) regular 4-gon
b) regular 6-gon
c) regular 5-gon
d) regular 3-gon.
(ii) To tile a floor, we may use pieces of regular 4-gon with:
a) pieces of regular 6-gon and pieces of regular 3-gon \quad b) nothing else (only pieces of regular 4-gon) c) pieces of regular 6-gon and pieces of regular 8-gon. d) pieces of regular 3-gon and pieces of regular 8-gon
(iii) To a tile a floor, we may use pieces of regular 8-gon with:
a) pieces of regular 3-gon
b) pieces of regular 4-gon
c) pieces of regular 12-gon
d) nothing else (only pieces of regular 8-gon)
(iv) Let K_{n} be a sequence such that $K_{1}=1, K_{2}=3$, and $K_{n}=K_{n-1}+2 K_{n-2}$ for each $n \geq 3$. Then $K_{4}=$
a) 4
b) 7
c) 5
d) 11
(v) The general formula for K_{n} is :
a) $2^{n}-1$
b) $2^{n}+1$
c) $2^{n}+(-1)^{n}$
d) $2^{n}+\left(3^{n}\right)$
(vi) Let $h: R^{2} \longrightarrow R^{2}$ such that $h(z)=(2,2) . z$. Then $h((2,2))=$
a) $(0,8)$
b) $(0,4)$
c) $(4,4)$
d) $(0, \sqrt{8})$
(vii) The angle of rotation of the above h is :
a) 90
b) 45
c) 180
d) 30
(viii) The stretching factor of h above is:
a)2
b) 4
c) $\sqrt{8}$
d) 8
(ix) Let C be a circle of radius 3 centered at O , and A is a point inside C such that $|O A|=1$. Then $|\operatorname{OInv}(A)|=$
a) 9
b) 3
c) 4.5
d) we can not tell.
(x) Let C be a circle centered at O and D is another circle inside C and D is passing through O . Then the inversion of D with respect to C is :
a) an infinite line passing through O
b) a circle that is completely outside C c) an infinite line that is completely outside $\mathrm{C} \quad$ d) a circle inside C passing through O but exactly in the opposite side of D.
(xi) Let C be a circle centered at O . Given A, B are points such that $|O A|<|O B|$ and O, A, B lie on the same line. Then
a) $|\operatorname{Inv}(A) \operatorname{Inv}(B)|=|A B|$
b) $|\operatorname{OInv}(A)|<|\operatorname{OInv}(B)|$
c) $|\operatorname{OInv}(B)|<|\operatorname{OInv}(A)|$
d) We can not tell
(xii) The measurement of each interior angle of a regular 10-gon is
a) 36
(b) 144
c) 100
108
(xiii) The measurement of each center angle of a regular 15-gon is
a) 156
b) 12
c) 24
d) 225
(xiv) One of the following is constructible by unmarked ruler and a compass:
a) regular 21-gon
b) regular 22-gon
c) regular 34 -gon
d) regular 50-gon
(xv) Given C is a circle centered at O and with radius 6 cm . Let A be a point such that $|O A|=3$. Let $\operatorname{Inv}(A)$ be the inversion of A with respect to C. Then $|\operatorname{OInv}(A)|=$
a) 2
b) 12
c) 9
d) 4.5
(xvi) If a regular n-gon is constructible, then the angle ($180 / \mathrm{n}$) is constructible.
a) True
b) False
(xvii) If an angle α is constructible, then the angle $\alpha / 16$ is constructible.
a) True
b) False
(xviii) Let C be a circle centered at O and with radius 3. Given A is a point such that $|O A|=1$ and D is a circle orthogonal to C and passing through A. Then one of the following values is a possibility for the radius of D :
a)3
b) 5
c) 3.5
d) 2
(xix) Let H be the horizon circle (the model for non-Euclidean) with radius 4 and centered at O. Let A be a point in H such that $|O A|=3$. Then the non-Euclidean distance between O and A is :
a) $\ln (3)$
b) $\ln (7)$
c) $\ln (9)=2 \ln (3)$
d) $\ln (4)$
(xx) In non-Euclidean (hyperbolic) geometry, if a, b are two points, then
a) There are infinitely many lines pass through a and $b \quad$ b) There is exactly one circle passes through a and b
c) There is exactly one line passes through a but not through $b l d)$ There is exactly one line passes through a and b.
(xxi) In non-Euclidean Geometry, the sum of all interior angles of a regular 4-gon is
a) 180
b) less than or equal to 180
c) 360
d) less than 360
(xxii) Let C be a circle with radius 4 and centered at O . Let Q be a point on C. Draw a circle call it D centered at Q with radius 4 again (note that D passes through O). The two circles intersect in two points, say A and B. Now choose a point say Z on D such that the line segment OZ is a diameter of D. Now the line segment $A B$ intersects the diameter $O Z$ in a point say M (note that $A B$ is perpendicular to OZ). The inversion of M with respect to the circle C is
a) the point Z
b) a point outside the circle D
c) a point outside C but inside D and not on D
d) is the mid point of the line segment $Q Z$.
(xxiii) In the previous question, the length of $A Z$ is
a) 4
b) $4 \sqrt{3}$
c) 6
d) $2 \sqrt{3}$
(xxiv) The length of $A Q$ in question XIII is
a) 2
b) $\sqrt{2}$
c) $2 \sqrt{3}$
d) $4 \sqrt{3}$
(xxv) Let K be the mid-point of the line segment $O M$ as in question XIII. The inversion of K with respect to C is
a) a point inside D but outside C
b) the mid-point meter $O Z$
c) the mid-point of $Q Z$
d) a point outside D but on the line extension of $O Z$

QUESTION 2. Fill in the blank
(i) Let C be a circle of radius 3 centered at O, A and B are points such that $|A O|=|B O|=1$ and the angle $A O B$ is a right angle at O. The radius of the circle that passes through $A, \operatorname{Inv}(B)$ and orthogonal to C is
(ii) Let C be a circle of radius 3 centered at O, D is a circle centered at F such that $|F O|=1$ and of radius 4. Then the $\operatorname{Inv}(\mathrm{D})$ with respect to C is a circle centered at B where $|A B|=-$ and it has radius
(iii) Let C be a circle of radius 3 centered at O, D is a circle centered at F such that $|F O|=5$ and of radius 5. The $\operatorname{Inv}(\mathrm{D})$ with respect to C is \qquad that is perpendicular to the line $O F$ and intersects $O F$ at a point W such that $|O W|=$
(iv) Let C be a circle with radius 5 and centered at $(0,0)$. the inversion of the point $(6,8)$ with respect to C is the point \qquad and the inversion of the point $(-2,1)$ is the point
(v) Given a line segment $A B$ of length x. The following steps will be used to construct a line segment of length $\sqrt{5} x —$ and the following steps are used to construct a line segment of length $\frac{4 x}{\sqrt{5}}$. In addition, if a line segment of length y is given, the following steps are used to construct a line segment of length $\sqrt{2 x y}$
If $x>1$ and a line segment of length one is given, then the following steps are used to construct a line segment of length z such that $x z=y$. If $x>8$, then the following steps are used in order to construct the golden cut on AB \qquad
(vi) Construct a hyperbolic non-Euclidean square, pentagon, 6-gon.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

